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Abstract

The purpose of this article is to find conditions under which two se-
quences given by linear recurrences of the second order with constant
coefficients are quadratically connected. The reason for this was a series
of problems in an Math Olympiad style for the solution of which it was
necessary in one form or another establish the quadratic connection be-
tween them.The text of the article is accompanied by a large number of
problems with variational solutions and generalizations

About quadratically p-q generated sequences.

Definition.
Let p, ¢ be real numbers. Sequence {z,,} we will call quadratically
(p, q)-generated if z,, = t2,n € NU {0} for some sequence {t,},
satisfying t, 11 — pt,, + qtn—1 = 0,n € N.
(such sequence {t,} we will call sequence-generator).

Theorem 1.
Sequence {x,} can be quadratically (p,q)-generated by some
sequence {t,} iff sequence {x, } satisfies to
(1) Tn+1l — (p2 - 2(]) Tn + q2xn71 = quvn € Na
where zo, 1 > 0 and M =2 (xl — py/T1To + qxo)
or equivalently
(2) znt2—(p* — @) Tny1+(0* — @) 2 —¢P2p—1 = 0,n € N, with zg x1 > 0
and xo = (p\/ﬂ — q\/xT))z .
Proof.
1. Let 7, =t2,n € NU{0} and t,,41 — pt, + qtn_1 =0,n €N .
Since tp41 — Pty + qtn—1 = 0 then (tp41 + qtn,l)2 = (ptn)2 —
tr o1+ 20t atn 1 + ¢ty = PPt
From the other hand
t7z+1tn—1 - t% == tn—l (ptn - qtn—l) - tn (ptn—l - qtn—Q) =
q (tntn—2 —t2_1),n > 1 implies t,1t,—1 — 2 = ¢" ' (tatg — t1) <

_ B qu,1
tugitn—1 = t=¢""" (1 —tato) = 5—¢""" (21 — py/E1TO + q70) = th——5—
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Then, 2qt,41tn—1 = 2qt% — 2Mq"™ and, therefore,

2=t 2t —2M G Pt = Pt =

o+ 2qtn s tn 1 +OD ) =GPt
(3) 2. ,— (P —2q) 12, +¢*2 =Mg",neN.
Substitution t,, = \/x, in (3) gives (1).
Due (3) we have
ti+z —(r* —29) tiﬂ +@Pt —q(th g +2qt) — Mg +¢*t_1) =0 <
tn+2 (P> —q)t +1+(qp —q )t2 — B2, =0 = (2) and, by (1)
=(p*—2¢)z1 — ¢ wo+Mq—p x1 — 2qz1 — q*x0 + 2qT1 — 2pg\/T1T0+

2‘12960 (pv/Z1 — av/T0)”

2. Let {z,} be sequence defined by (2) with o 21 > 0 and

zy = (py/a1 — \ﬁ) and let {t,} be a sequence which
satisfy to the recurrence
tn1 — ptn +qtn—1 = 0,n € N, where tg := /2o, t1 := \/Z1.
We will prove z,, = t2,n € N using Math Induction.
Base of Math Induction.
We have ¢ = t&, 21 = t}, 20 = (py/z1 — q\ﬁ) (pt1 — qto)® = t2.
Step of Math Induction.
For any from supposition @, 1 = t2_,, &, =t; 2,41 =t follows
Tnyo = (P* = q) o1 = (0 — @) Tp + Py =
(P’ —a)tpsr — (@* — ) th + Pt =17,
As a corollary note that {x,} can be quadratically (p, 1)-generated by
some sequence {t,} iff sequence {z,} satisfies to
Tn+1 — (p2 - 2) Ty + Tp—1 = M,?’l S Na
where z9 £; > 0 and M =2 (a:l —p\/m—l-xo) .

Another example when quadratically (p, ¢) —generated sequence {z,,}

can be defined by linear second degree recurrence with the constant

in the right hand side we obtain in the case p=r+1landg=r,r € R.

Indeed, in this case
(2) = zpi2— (7‘2 +7r+ 1) Tpt1 + (7"3 +7r2+ 7‘) Ty — 13Ty =0 <=
Tpt2 — (7"2 + 7“) Tnt+1 + r3z,, — Tn+1 + (7‘2 + 7“) Tp — 13Ty =0 =
Tpyo — (7’2 + r) Tpt1 + r3xn =Tpy1 — (7"2 + 7") Ty + r3zn_1.

Hence, z,41 — (1"2 + 7") Ty + r3 mn 1= T2 — (r2 + 1") 1 + r3;ro = ¢ = const.

Since 3 = ((r + 1) /a1 — /% ) then

c=(r+1)7n +r2x0 = 2r (r+1) /zoxy — (r? +r) zy + 13z =

(r+1) (331 — 2ry/ToT1 + 7“23:0) =(r+1) (\/xl — 7‘,/3:0)2
Thus z,4+1 — (r2 —I—T) Ty + 132, 1 = (r+1) (\/571_ T\/QTO)2 ;neN
Sequence-generator {t,} satisfy to recurrence

tn+1 — (7“ + 1) t, +7rth,—1 =0

and since t,11 — rty, = t, — rt,—1 then t, 1 —rt, =t1 — rio.
Let d:=1t; —rtp then t,01 — (r+ 1) t, + 1tp—1 =0 < ty41 =71t, +d.
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(Or, the same result can be obtained by the other way:
Since tp41— (r+ 1)ty +rtn—1 =0,m €N < t,41 =rt, +d,n € NU{0},
where d := t; — rtg, then
(tn1 — d)? =2 = 2, — %2 = 2dt,1 — d>,n € NU{0},
and, therefore,
e (t% — rztifl) =2drt, 1 — d? — 2dr, 1 — 2dr?t, +rd® =
2d (tpe1 —rtp) —d?> +rd> =d*> (r+1) =
2= (rPHr) 2+, =d?(r+1) <=
Tpal — (r2 + 7“) T+ 130, 1= (r+1) (\/ﬂ— r xo)2 ,n e N.

Naturally ask a following question:

For which p, ¢ sequence {z,} defined by second degree linear
TeCurrence Tpi1 — Uy + ATp_1 = o, where p, A\, 0 some constants
is quadratically (p, q)-generated?

For any polynomial P (z) = 2™ + p12™ 1 4+ poa™ 2 + ... + P17 + P
and any sequence{a,} let
Lp (an) := @nim—1 + P20nim—2 + .. + Pm—10n +an_1,n € N.
Then for given sequence {b,} recurrence
Ontm—1+P2Anim—2 + oo + P10y + @1 = by
get short notation Lp (ay) = b,,n € N.
Note, the following properties of this notation:
1. Lpig (an) = Lp (an) + Lg (a,), for two polynomial P (z),Q (z);
2. L.p(a,) =cLp(ay,) for constant ¢ and polynomial P (x);
3. if Q(z) = 2P (x) then Lg (an) = Lp (ant1) -

Lemma.

Let P (z) = 23 — ax? + 3z — such that P (0) #0 and Q (z) = 2 — Az +p .
Then any solution of Lg (z,) = ¢ be solution of Lp (z,,) = 0 iff
Pz)=(x—1)Q(z) ie. P(l)=0and a=A+1,=pn+ A\, v=p.

Proof.
Suffieciency.
IfP(zx)=(x—-1)Q(z) =2Q () — Q () then
LP (:I,’n) = LQ (.’ﬂn+1) - LQ (an) =c—0=0.
Necessity.
Let Lg () =0 = Lp(x,) =0, where {z,,} # 0. Then, since
P(z)=(x—1)Q(z)+ P (1) we have
0=Lp(zn) = Lq (Tnt1) — Lq (xn) + P (1) z, =
c—oc+P)z,=P()z, = P(1)=01

Let P(z) :=2® — (p? — q) 2* + (p*’q — ¢*) v — ¢>.
Due to Theorem 1, sequence {x,} ,defined by recurrence
Tpt1 — ATy + fiZn—1 = o is quadratically (p, q)-generated by {t,}

ifft Lp (z,) =0 and zg,21 > 0,29 = (p«/:cl — q,/oco)2 and
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by Lemma it is possible iff
PM=0 = 1-(p"-q)+ (01— ¢*) - ¢ =0 <= 1+q-¢°—¢*-
=1
1-q)p?> =0 <= (1— (1+ 2—2)20@{ 1 )
(1-q)p (1-¢)((1+q —p ip| = g+ 1]
And also, by Lemma we have A\=p®> —q—1=q(p> —q¢—¢*), p=¢>
andaz:cz—(pQ—q—l)xl—l-qgmo.
If g=1 and p € R then
2
A=p* =2, p=10=(pyo1 —Z0) — (pP* —2)z1+ 30 =
2 (wo — py/ToT1 + 1)
If geRand |p| = [g+ 1] then \=gq (p* —q—¢°) =q(g+1), p=¢>
2
o = (pya1 — qy/@0) —(¢® +q) 71 +¢Pz0 = (¢ + 1)* 21+ qPx0 —2qp\/Tow1 —
(®+q) 21+ ¢*xo = ((g+ 1) 21 — 2qpy/Tox1 + ¢ (¢ + 1) 20) =

2 .
(¢+1) (Va1 —qy@) it p=q+1
(¢+1) (Va1 +aym) , ifp=—q—1
Thus, we obtain following
Theorem 2.0nly three kinds of sequences {x,} defined by recurrence
Tpt1 — ATy + pxn—1 = o,n € N can be quadratically (p,q)-generated:
i. Sequence {z,} defined by
Tni1 — (P = 2) Tn + 21 =2 (w0 — py/Toz1 + 1) ,n EN, zg, 21 > 0.
Then z, = t2,n € NU{0}, where
tnt1 = Pln + gn—1 = 0,n €N, tg = \/Z0, 11 = \/Z1;
ii. Sequence {x,} defined by
2
Tns1— (@ + ) Tn + Pt = (¢+1) (Va1 — ¢v/Z0) ,n €N, zg,21 > 0.
Then z, = t2,n € NU{0}, where
thi1 — (@ + D tn +qn—1 =0,n €N, to = /To,t1 = /T1;
iii. Sequence {z,} defined by
2
Topt1 — (@ + ) 2+ Prnor = (¢ +1) (V1 +4v/T0) ,n EN, 20,21 > 0.
Then z,, = t2,n € NU{0}, where
thy1 + (@ + Dtn +gn-1=0,n €N, tg = /20, t1 = /T1.

Applications.
Problem 1.(0O86.MR, Proposed by Brian Bradie,
Christopher Newport University, USA).
The sequence {a,} is defined by a1 = 1,a2 = 3 and a,4+1 = 6a, — ap—1
for all n > 1. Prove that a,, + (—1)” is a perfect square for all n > 1.
Solution.
Using a1 = 1,a2 = 3 and a,4+1 = 6a, — a,—1 we can define correctly
ag as 6a; — ay = 3.Let x,, := a, + (—=1)" then zq = 4,7, = 0 and
1" in apiq — 6an + an_1 = 0 gives us
"t peNand zg =4, 2, = 0.

substitution a, = z, + (-
recurrense Tpny1 — 6x, + p—1 = 8(—1)
Easy to see that for ¢ = —1, p = 4 we have
p?—2¢=6,4>=1, M =, — P\/Z1Zo + qzg = —4 and, accordingly
to the Theorem 1, z,, = t2,n > 1, where

1985-2018 Arkady Alt 4
© y
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tn+1 —4tn—tn,1 :O,TLZ 1 and to :2,t1 =0.

Remark (generator of the similar problems).
For any real a, b, p, ¢ where p? # 4q let sequence {a,} be defined by
An41 — (P2 - 2Q) an + 112an1 =0,n€ N
and initial conditions ag = a® + ¢, a1 = b? + cq,where
2 (b2 — pba + qa2)
B dg—p*
Then a, + cq"™ = t2,n € NU{0} ,where sequence {t,,} satisfy
tny1 — ptn +qtp—1 =0,n € Nand tg =a, t; =0.
Indeed, easy to see that z, := a,, + cq" satisfy
Tp4+1 — (p2 - 2(]) Tn + qunfl = quan € N7
where zg = t3, 2y =3, M =2 (t% — ptitg + qt%) and, therefore, accordingly
to Theorem1 sequence {z,} is quadratically (p,q)-generated.

Problem 2.

b, by—
Let sequence (by,) satisfy b, = Ong1 4 On—1

98
1
is square of integer for any n € NU{0}.

for any n € N and by = b; = 5.

Then

Solutionl.

Let x, := ——— then 29 = 21 = 1 and by substitution b,, = 6z, — 1

in recurrence b, 11 — 98b, + b,—1 = 0 we obtain for {x,}
following recurrence
Tpt1 — 98z, + 21 = —16,n € N.
Accordingly to Theorem 2,case i. we clame p? — 2 = 98 and
Z(xo—p\/M—&—xl) =—-16 <=
p=+410and 2 —p=-8 < p=10.
Thus z,, = t2,n € NU{0}, where t,;1 — 10t, +t,_1 =0, n € N

n’

and to =1 = 1.

Remark (another solution).
b, +1
6

Since by, positive for all n € NU{0}, then we can define ¢,, :=

bn bn_1+2+2+/(b, 1) (b1 +1
Then (tn_;’_l —+ tn_1)2 = +1 + 1 + + \é( +1 + ) ( 1 + ) _

98D, + 2+ 2¢/(bns1bp—1 + b1 + b1 + 1) 98by, +2+2,/byi1by—1 + 98, + 1
B 6 B 6 ’
Since by, 16,1 — b2 = byby — b? = 2400 then we have
o 98by +2+2./BZ + 98D, + 2401 98bn + 2424/ (b + 49)*
(tn—i-l + tn—l) = 6 = =

6
by, +2+2(b, +4
98by, + +6 (b +49) = % (b +1)= (107571)2 .Thus, t,,+1+t,—1 = 10¢,, and

since to = t; = 1 we conclude that ¢, is integer for all n € NU{0}.
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Generalization. (Generator of this kind of problems)

Theorem 3.

Let sequence {t,} satisfy t,+1 — pt, + tn—1 = 0,n € N with t; =t =1,
where p? # 4 and sequence {a,} satisfy a,y1 —ra, +sa,_1 =0,n € N
with ag = a1 = a.

2 2
Then, a,, = kt2 +1 for some k,l iff s = 1,7 =p? -2,k = %,l S——
p p
Proof.
an, — 1 a—1 o
Let z,, := —n € NU{0} then xp =27 = and, by substitution

ap, = kxp +1in apy1 — ray + sap—1 =0, n € N, we obtain for {z,,}
following recurrence

I(r—s—1)

T4l — Ty + 8Tp—1 = — % n € N.
By Theorem 1 a, = kt? +1 <= x, =t ,n € NU{0} <
l(r—s—1 a—1
s:erp%a,i—E——l:2@%—mﬁo+%):zﬂ@—py 7 =12
1(p?> -4 l 2
Thus we have % =2t2(2—p) < kt’= —# and,
l 2 2
since a — I = kt? then —# =qg-1] < |= —?a and, therefore,
b — lpt2) _alpt2)
B 2 pt2
Corollary.
If aper — (p2 — 2) an+an—1=0,n€Nand ay=a; =a#0,
t2pan 2
where a, p € Z and |p| # 2, then, + is square

a(p+2) p+2
of integer for any n € NU {0}.

Problem 3.

Let a1 =1, any1 = 2a, + /302 — 2,n € N. Prove that all term of
this sequence are integers.

Solution 1.

Since a, > 1 = any1 — 2a, > 0 we have ap41 = 2a, + /3a2 — 2 <—
(Gng1 — 2a,)% = 302 —2 a2y —4dani1a, +4a2 = 3a2 -2 <~
aZ iy —4dan1a, +af = -2 = a2 —4dapan_1 + ai_; = —2.Hereof
af,,_H —4ay, 10, +a? — (ai —4apan-1 + afl_l) =0 <=

aZ  —a2_; —4da, (angy1 —an_1) =0 <=

(anJrl - anfl) (an+1 —4an + anfl) =0

an+1 —4ap, +an—1 =0, since apy1 > ap—q -

From the other hand, if a,4+1 — 4a,, + a,—1 = 0,then we obtain

afH_l —4daptiay + a% = a% —4dapa,_1+ a%_l -

a2 —danan_1+a2_| =a3 —4daza; +a? =32 -12+1=-2.

Solution 2.
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Let ¢, := \/3a2 — 2 then a,41 = 2a, + ¢, and from 2 | = 3a2,, — 2 =
3(2a, +tn)? —2 = 1202 +12a,t, +3t2 —2 = 9a2 +12a,t, +3t2 + (302 — 2) =
(3an, + 2tn)2 follows t,11 = 3a, + 2t,.

Ant1 = 20y + 1ty
tn+1 = 3an + 2tn

in the second recurrence, we obtain
pt2 — 20p4+1 = 3an + 2 (ant1 — 2a,) <= any1 — dan + ap—1 =0).

From system , by substitution t,, = an+1 — 2a,

Generalization.(Generator of this kind of problems)
Let sequence {t,} defined by ¢,11 — 2pt,, + t,—1 =0,n € N,
where p > 1,¢; > 0 and pt; > tg.
Since p > 1 and pt; > tg then to — pt1 = pt1 —tg > 0.
Using to > ptiand t; > 0 as a base of Math Induction and for any n > 1
assuming that ¢,.1 > pt,, and ¢, > 0, we obtain ¢,1; > 0 and
tpyo — Plug1 = Plprr — ty > (p2 - ]-) ty, > 0.

Multiplying tpt1 +th—1 = 2pt, by 41 — t,—1 We obtain
th 12 = 2ptotagr — 2ptn_it, =

2.1 = 2ptptygr + 12 =t2 —2pt,_q +t2_;,neN.
Hence, t2 | — 2ptntni + tfl =c,n € N, where ¢ = t? — 2ptito + t3
and t%+1—2ptntn+1 +t2 =c < (tns1 — Dtn ) (p2—1)t%+c —

tony1 =ptn + /(P2 — 1) 2 +¢e,n €N,

since tp+1 > ptn,n € N and

(p —l)t2 +c> (p — 1)t2+t2—2pt1t0—|—t0 = (pt1 —to) > 0.
Opposite, let now {t,} be a sequence defined by

tny1 =Dptn + /(PP — 1) 2 +¢,n €N,
where given p > 1,#; > 0 and ¢ such (p® — 1)t + ¢ > 0.
Then {t,} = {t,} satisfy ¢, 41 — 2pt,, +t,—1 = 0,n € N with

to = pt1 — /(p? — 1)t% +c.

Herewith tg < pt; and ¢ = t1 — 2ptito + t%.
Indeed, then {¢,} satisfy to t2 ; — 2ptnt,11 +t2 = c¢,n € N, and since
tn+1 > pt,,, we obtain t,,o > tn, n € N and
n+2 2ptn+1tn+2 + tn—i—l ( 1~ 2Ptatng + tz) =0 &
2.9 —t2 = 2ptyiitnge — 2ptntnr >
(tn+2 — tn) (tn+2 +t, — 2ptn+1) =0 tnyo +1tn — 2ptn+1 =0,n€N.
Since ty = pt1 + +/(p? — 1) t2 + ¢ then
to = 2pt1 —ta = pt1 — \/(p? — 1) t3 + ¢ < pt; and ¢ = 3 — 2ptity + 2.

Thus we obtaine the following theorem and corollary:

Theorem 4.

Let a > 0, p > 1 and c such that (p2—1)a2—|—(320.

Then sequence {a,} defined by an+1 =pa, + /(> —1)a2 +¢,n €N
with a; = a can be defined by recurrence a,+1 — 2pa,, + a,—1 =0

with initial conditions a; = a and a9 = pa — \/(p? — 1) a® + ¢;
Corollary.

Let a be natural number and let p and ¢ be integers such that p > 1 and
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(p2 — 1) a® + c is non-negative integer. Then all terms of the sequence {a,},
defined by an41 =pan, ++/(p?> —1)a2 + ¢,n € N with a; = q,
are natural numbers.

Remark.

Using idea of the second solution we consider another approach

to the general case.

Let any1 =pan ++/ (P2 —1)a2 +¢,n € N, a3 > 0,p > 1 and ¢ such that
(p2 — 1) a?+c¢>0then a, >0,n € N and a%_H —2panan+1+ai =c =
a2 — 2panan41 = ¢ — a2 . Denoting ¢, (102 1) a2 + ¢ we obtain
p+1 = Pap, + 1y, andthenthH :—( ) n+1+C—p an+1—|—c n+1:
p2“i+1 +a2 — 2panani1 = (Pans1 — an) = ((p — 1) ay + ptn ) =
Opt1 = Pap + 1ty

tnt1 = (p2 - 1) G + Pt
we obtain t,49 — 2pt,4+1 +t, = 0 and ant2 — 2pan4+1 + a, = 0.

lny1 = (;D2 — 1) @y, + pty,. From the system

% Problem 4.
1
Let sequence {b,} defined by b, 41 — 6b,, + b,,—1 = 0 with by = 3 b = %
1
Prove that all terms of sequence t, :=4/2b2 — —,n € NU {0} are integers.

2
Solution.

Since bg = ? and bn+1bn,1 — bi = bn+1bn,1 — b% =
(Gbn - bn—l) bn—l - bn (6bn—1 - bn—2) == bnbn—Z - b%_la
then bn+1bn,1 — b% = b2b0 — b% =2.
From the other hand multiplying b,,11 — 6b,, + b,—1 =0 by b,_1
and using by, 41b,—1 — b2 = 2 we obtain

601y —1 = bpy1bp—1 + 03 1 =02 +b2_, + 2.

1
Let z,, = 202 — ok Then we have

n>2

1 s 1
SRR S S S L

1 1
7262 — 24b,_1b, +2b2_, 5:72b$f4(bi+b2 1 F2)+ 202 —5=

68b2 — 2b2_; — 8 — % = 34 (2bi— ;) +17 — <2b31+;> -9=
34x, — x,_1 + 8.

Thus for {z,} we have 2,41 — 34z, + 2,1 =8, n €N, g =0,21 =4
and, by Theoreml, z,, = t2 ,n € NU {0} ,where {t,} defined by
tht1 — 6ty +tn1—0andt0—0t1—2

(g=1,p=6,M =2 (21 — 6\/T120 + 70) =8 ).

Problem 5. (S. Harlampiev, Matematika 1989,No.2 ,p.43,

Bolgaria)
Sequence {a, } defined as follow
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2a4p+1 — 3anan4+1 + 17a, — 16 n
3an i1 — 4anan 1 + 18a, — 17’
a) Determine a,, as function of n;

b) Prove that all terms of the sequence {a,} can be represented

a1:a2:2, Ap42 = e N.

1
in the form 1+ — where m € N.
m

Solution.
2ap4+1 — 3anap4+1 + 17a, — 16

3ap4+1 — 4anany1 + 18a, — 17

Using substitution a,, = b,+1 we obtain a, 12 =

(@n — 1) (ap1 — 1)

nio — 1= =
R {an =D =4 an =1 (a1 = 1) — (anss =1)
1 14 1
bnig = A = — = - -4 =
+2 14bn - 4bnbn-ﬁ-l - bn+1 bn+2 bn—i—l bn
1 1
Tpyo — 14xp 1 + x,, = —4, where x,, = . = p— and x1 = 29 = 1.

Since xg = 1427 — 29 —4 =9 and 14 = p? — 2q for p =4, ¢ = 1 then
2 (371 — py/T1To + qato) =—4
and, therefore, by Theorem 1 z,, = t2,n € NU{0} ,where

tn+1 —4t, +tp_1 = O,TL € Nand t; =ty = 1.

Problem 6.
The sequence (z,,)y is given by

ro=1 (VA" 2-vB)™ ) nen.

Prove that each x,, equal to the sum of squares of two consecutive integers.
Solution. /3 /3
2—4/3 n 243
(7T+4v3)" + —

therefore, can be defined by recurrence
(1) Tp+1 — Mzy + 2,1 =0,n €N
with initial conditions xg = 1,z = 1.
(1o =13=22+4+3% 23 =14-13 — 1 =92+ 10?).
We will find a sequence (b,) of integer numbers such that
T =02+ (by +1)° <= 2z, —1=(2b, +1)> <= y, =a2,
where y,, :== 2x,, — 1 and a,, := 2b,, + 1.

First note that x,, =

(7—4v3)" and,

1
By substitution z,, = yn;— in the recurrence (1) we obtain
: 1 1 n— 1
M_M. y”; +y” 12+ =0 <= Y1 — M4y +yn_1—12=0,

where yo = y; = 1 and, therefore, yo = 25.
We will prove that a, is defined by recurrence

(2) Gnt1 —4ap +apn—1 =0, n €N
with initial conditions ag = —1,a; = 1. Obvious that a, € N.
Note that

2
(an+1 + an71) = 16@% <~ a%-&-l + a‘%?.—l —+ 2an+1an,1 = 16&% ==

a%H —&-a?kl —14a% :2(ai—an+1an,1 Jags=4-a1 —ag=4+1=>5.

: 2
Since a;, |1 —Ap420n = Gni1 (4ay — an_1)—(4ant1 — ) G = a5 —Ap_10n41
for any n € N then a2 — a,_1a,41 = a3 — agaz = 1+ 5 = 6 and,
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therefore, a? | + a2_; — 14a2 = 12.

Since af = y1,a3 = y» and both sequences (y,,), >, » (ai)n>1 satisfies

to the same recurrence then y, = a2 for any n € N.

By substitution a,, = 2b,, + 1 in the recurrence (2) and initial conditions
ap = —1,a; = 1 we obtain

2bp41+1—-4(2b, +1)+2b,14+1=0 < b1 —4b,+b,_1=1,n€N
and by = —1,b; = 0. And, of course b,,, is integer for any n € N

(For example by =4-0—(=1)+1=2,b3=4-2—-04+1=9,..)

Problem 7 (M1174"KVANT)
Sequence of integers ay, asg, ..., a,, ..is defined by recurrence
Ung3 = 2an42 + 20p41 — Gn, 1 €N
with initial conditions a1 = 1, ay = 12, a3 = 20.
Prove that for any natural n number 1 + 4a,a,+1 is the square
of integer number.
Solution.

Since ap43 — 2ap412 — 241 + An = Apy3 — 3Gpi2 + Gpi1t
an+2_3an+1+an =0 an+3_3an+2+an+1 = (_1) (an+2 - 3an+1 + an)
we obtain other equivalent definition of sequence (ay)y:
(1) anso —3ani1 +a, = (—1)”71 (a3 — 3as +a1) =

(—1)"71 (20 — 36 + 1) = (—1)" 15.
Remark.
By substitution a,, = (—1)"b,, in the recurrence (1) we obtain the
following eqivalent setting of original problem:
Sequence (by,)y is defined by recurrence
Prove that 1 — 4b,,b,,11 is the square of integer number for any n € N.
But we will use another substitution a,, = (=1)" (¢, +3) which gives us
convenient form for equivalent representation of our problem.
Namely, we have now linear homogenious recurrence

Cnt+2 + 3Cn+1 +cp = O,n € N with ¢; = —4,62 =9
and we have 1 4+ 4apant1 =1 —4bpbpi1 =1 —4(c, +3) (cnp1 +3) =
— 35 —12¢;, — 12¢p41 — 4cncpa-

Since cg =3, Cpi1Cn_1 — €2 = cacop — ¢ = 11 and

Cn-1(Cny1+3cn +cno1) =0 < cp_1Cnp1 +3cncn1+c2_1 =0
we obtain

3cnCpn_1 = —cfhl — Cp—1Cn+1 = —cfkl — c% —11.
Thus, 1+ 4anan+1 = —35 — 12¢,, — 12¢p,41 + 8cpcnt1 — 12¢pcp41 =
=35 — 12¢,, — 12¢p41 + 8cpCpp1 + 44+ 42 | + 42 =
A2 1 +4c2 + 9 —12¢, — 12¢,11 + 8cuCny1 = (2641 + 26, — 3)°.
Let t, :=3 — 2¢cp41 — 2¢p,then 1 +4apan41 = t% where t,, satisfy to the
recurrence 3 —t,11 +3(3—t,)+3—t,1 =0 <
tny1+ 3ty +t,—1 =15

andto:3—200—2¢:1 :5,t1:3—201—202:—7.

- rka t
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Remark. (Generator of such problems).

Let {t,} satisty t,4+1 — pt, +tn—1 = 0,n € N. Then, using identity
tniitn_1 —t2 = tatg — 3, we obtain

b1 (b1 — Pln + 1) =0 <= plyptpir =th ) +tugitn-1 <
Plutni1 =121 +t2 — K,n € NU{0}, where K :=t} — pt1to + t3.

For arbitrary b we have

(p+2) (tn +b) (tng1 +b) = (p+2) (tntni1 + b (tn + tugr) + %) =

o+ t2 — K+ 2t +0(0+2) (bn + tpy1) + (p+2) 0% =

(b +tns1)” +0(P+2) (bn + o) + (p+2)0° — K =

bp+2)\> b2 (p+2)°

<tn+tn+1+ (p2 )> — (p4 ) +(p+2)b? - K=
b(p+2)\> > (p*—4

(tn+tn+1+ (p; )> - (p4 ) k. Thus,

A(p+2) (tn +b) (tng1 +b) = (2t 4 2tpy1 + b (p+ 2))°—4K —b> (p? —4)

AK + 02 (2 —4) +4(p+2) (tn +b) (tag1 +b) = (2t + 201 +b(p+2))%.

Denoting x,, := t,, + b,, we obtain that for {x,} defined by
Tyl —PTp + Tpo1 =0(2—p),n€Nand g =19+ b,z1 =t1 + b,

holds 4K + 0% (p* — 4) + 4 (p + 2) Tppi1 = (22, + 22,01 +b(p — 2))°.
For p = —3,ty = 3,t1 = —4 and b = 3 we obtain
K=16+3(-12)+9=—11,
4K + b? (p2 - 4) +4(p+2)xprpt1 =1 —4x,2,41 and
(220 4 2Tp i1 +b(p—2)) = (22, + 20041 — 3)°.

More generalizations.

1.First we will find recurrence for {¢,t,41}.

Since t2,, — (p? —2)t2 +t2_, =2K,n €N and

Plutni1 =t24 +t2 — K,n € NU{0}

then p (tnq1tnse — (P2 = 2) tutng1 +tn_1tn) =

Dlntitnto — (p2 - 2) Dlnlnt1 + plp_1ty =

thiottn — K —(p?=2) (0 +1, —K) +6, +15 - K =

(thiz— (07 = 2) th +80)+ (o — (07 = 2) 8 + 5 1) AK—p’K = —p°K
tutitnrz — (07 = 2) tatnt1 +taoity = —pK.

2.Lemma.
Let {t,} satisfy t,+1 — ptp, +tn—1 =0,n € N.
Then for any p ¢ {0,—1,2,—2} there is m € N such
(tm+3 = tmr1) (bms2 — tm) (mt2 — tmg1) # 0.
Proof.
Consider following cases.
i. There is m such that t,, = t,,41 then due to homogeneity of
the recurrence t,+1 — pt, +t,—1 = 0,n € N we can suppose
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that t,, = t;n41 = 1.Also, without loss of generalty, we can assume that
m = 0.

So,wehave tg =t; = l,to =p—1,t3=p(p—1) -1 =p* —p—1,

Thentz —t1 =p* —p—-1-1=p*—p-2=(p—-2)(p+1) #0,

tz—toztg—tl :p—Q#O

Thus, (tm+43 — tm+1) (bmr2 = tm) (tmae — tmy1) # 0 for m = 0;

ii. There is m such that t¢,, = t,,+2 then due to homogeneity of the

recurrence tpy1 — pty, +tn—1 = 0,n € N we can suppose that

tim = tm+2 = p. Also, without loss of generalty we can assume that m = 0.

So, we have ty = to = p.Then, pt; =tg+ts =2p = t; =2 and

ts=p*—2, tsy=p(p*—2) —p=p*—3p.

Hence, t4—t2:p3—3p—p:p(p2—4) #0,

ts—t1=p*—2-2=p* —4#0,tz3—ta=p*—2-p=(p—2)(p+1) #0.

Thus, (tm+3 — tm+1) (tm+2 — tm) (tm+2 — tm—i—l) 75 0 for m = 1.

Theorem.
Let {t,} satisfy tp41 — ptn +tn—1 =0,n € Nand let p ¢ {0,—1,2,-2}.
Then sequences (tntnt1),505 (tn +tnt1)psos (1),>o are linearly
independent, i.e at,t, i1 + B (tn +tny1) +7v = 0 for any
neNU{0} iffa=p8=~=0.
Proof.
Suppose that there are «, 3,7 not all equal to zero such that
otptny1 + ﬂ (tn + tn+1) +7= 07 for any n € NU {0} ’ then (aaﬂa’y)
be solution of the system
atntn+1 + 6 (tn + tn+1) +v= 0
atn+ltn+2 + B (tn+1 + tn+2) +v= 0
atpyotnis + 3 (t7z+2 + t7L+3) +v=0
for any n € NU{0}.
Note that
tntn-l-l tn + tn-‘rl 1
det | tpyitngs  Tng1 +tng2 1 =
tn+2tn+3 tn+2 + tn+3 1
tntn+1 tn + tn+1 1
(tn+3 — tn+1) (tn+2 - tn) det tn+1 1 0 =
tn+2 1 0
(tn+3 - tn+1) (tn+2 - tn) (tn+2 - tn+1) .
Since by Lemma always exist at least one m such that
(tm+3 — tm+1) (bmt2 — tm) (bmt2 — tmt1) 7 0 then from system
tmtmt1 + ﬁ (tm + tm+1) +7= 0
otmi1tmie + B (Emy1 +tmi2) +7y=0 followsa=p3=~=0.
atmyotmis + B (tmy2 +tmys) +7 =0
Let f(z,y):=a(2®+y°) +bry+c(z+y)+dthen f(tn,tni1) =
a (ti + t%-{-l) + btntn—i-l +c (tn + tn-‘rl) +d=
a (ptn,tn+1 + K) + btntn-l—l +c (tn + tn—i—l) +d=
(ap+b) tptpnsr +c(tn +tng1) +d+ aK.
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Theorem 5.
Let sequence {t,} satisfy t,,+1—ptn,+t,—1 = 0,n € N where p ¢ {0,—1,2, -2}
and 2 +t3 # 0 then f (t,, th1) = (aty, + atpy1 + 5)2 ,n € NU{0}
for some « and S iff
ap+b=a%(2+p)

c=2ap
d+aK = * + a’K
Proof.
Since

(aty + atpir +B) = a2 (12 +1211) + 202t pt i1 + 208 (tn +toi1) + 52 =

A2 (ptotnyr + K) + 202t ptn 1 + 208 (ty, +toyr) + 67 =

a? (24 p) tatns1 +2a8 (tn +tns1) + 8%+ 2K then by Theorem

ftnytng1) = (b + atnis + 8)°,n € NU{0} —

(ap +b—a? (2 +p)) tntny1 + (¢ —2aB) (tn +tny1) +
d+aK — % —a?K =0, n e NU{0}

iff ap+b=a%2+p), c=2ab and d+ oK = 5% + ?K.

More general analysis associated with problem 7.
First, we will find recurrence for sequence (a%) where (a,) be
defined by recurrence
n+1 — 2pay + ap—1 =0,n € N.
Since 4p?aZ = a2 | + a3_y + 2ap410,—1 and
M := asap — a? = apy10n,_1 —a2,n €N
we obtain 4p?a2 = a2, | + a2 _; +2a2 +2M —
a2, 1 —2(2p* —1) a2 +a2_, = —2M.
Second, we will find recurrence for sequence (a,a,11)
Multiplying both sides of recurrence a2 — 2pan+1 + an = 0 by a,,
we obtain a,426, — 2pan 116, + afl =0 <= 2pan+i10, = afH_l + ai + M.
Hence, 2p (ant2ant1 — 2 (2p% — 1) apngr1an + anan_1) =
a2 o4ai  +M—-202p*—1)a2,, —2(2p? — 1) a? — 4p> M+
2M + a2 +a?_, +M:ai+2—2(2p2 — l)aiﬂ—i—ai—i—QM—i—a%H—
2(2p* —1) a2 +a2_, +2M — 4p*M = —4p°’M —
Qpt20n4+1 — 2 (2p2 — 1) Gpt+10p + apap—1 = —2pM.
This is interesting recurrence, but more important now correlation
2pan1an = aiﬂ + CLEL + M,
because in the first, it show the way how construct problems like
Problem 7 and in the second it is the base for the following
generalization, namely we will prove that for any natural m holds
representation
AnGn4m = ama% + 67na%+1 + Y
1. We start from the special linear combination of a,, and a1,
namely let a, 8 be arbitrary real number then
(Qant1 + an + B)° = a2 (a2, +a%+ M)+ B? — a?M+
20%a, 110, + 20Ba, 41 + 208a, =

- rka t
(©1985-2018 Arkady Al 13



About quadratically p-q generated sequences.

2P a1 Gn + 20200 1100 + 2080011 + 2080, + 57 — 2 M =
202 (p+ 1) apyi1an + 2afan+1 + 2a8a, + 5% — a?M.

So, for given p, o, 8, a,b, if apy1 —2pan, +an—1 =0,n €N
with ag = a,a; = b then M = 2pab — as — b? and

202 (p + 1) apy10n + 20Bans1 + 2aba, + 8% —a’M = (aap+1 + aay, + 6)2 .

Note,that for « = 2,8 = -3,p = f%,a = 3,b = —4 we obtain

—dapi1an — 126541 — 124, +9—4(36 —9 — 16) =
—Alp1Gn — 120941 — 120, — 35 = (2an41 + 2a, — 3)°.
For some suitable constant 4,7, 0, we can consider quadratic form
6(1%“ + Nap 10, + 0a2 + Oan 1 + Oa, +¢ which with using identity
2pay 410, = a2, +a2+M can be transformed to the (aa, i1 + aa, + 5)°.
It should be constant §,7,0, ¢ such that
n+42ps =2a%(p+1), 0§ =2a3,( — M = B> — o>M.
Other, more difficult problem can be constructed if we use sum of
two squares (Qan+1 + aa, + 6)2 + (Yant1 + dap, + )\)2 .
2. Since Otm+1a% + ﬂm—&-lai—i-l T Vmt1 = Onlnimt1 =

2panan+m — Anlp4m—1 =

2p (ama% + 5ma721+1 + ’Ym) - (amfla% + ﬁmfla%Jrl + ’mel)
we can see that au,, 3, and -,, satisfy to the same recurrence
T4l — 2PTm + Tm—1 = 0 but have different initial conditions.
From a? =1-a2 +0- a2, + 0 we obtain ap = 1,8, = 0 and v, = 0.

1

M
2 .
2pan+1 -+ — we obtain

1
From a,a = —qa?
nUn+1 n + 2p

2p
1 1
= — = — d = —.
aq vaﬁl 2p and 7y 2]7
1 1 M
For example ag =2p- — —1=0,8,=2p- — —0=1,7,=2p- — -0 = M,
2p 2p 2p

thus aya,12 = a, | + M;

1 1 1 4p?—1 M
:2~0——:—— :2~1——: :2~[\/1——:
a3 2p 2p 2p ) 63 Z: 22p , 2p ) 73 p2 2p
M (4p% —1 : 4p2 —1) M (4p% -1
M 1) ),thus Gntipyy = —on 4 Dot (pf=1)  M{°-1)
2p 2p 2p 2p

Using representation a,an4m = ama2 + 3,02 1 + 7, we obtain

Opi10ntmi1 — 2 (2p2 - 1) AnGptm + Gpn—10p4m—1 =

am (a2, —22p*—1) a2 +a2_1)+B,, (a2 5 —2(2p* = 1) a2, +a2)+y, (1—-2(2p* - 1) +1) =
—2M (Oém + 5m) +4 (1 7p2) V-

Thus, for any fixed m > 0 we have the following recurrence for a,,a,mn:

an+1an+m+1_2 (2192 - ]-) anan+m+an71an+mfl =—-2M (am + Bm)+4 (1 - p2> Ym-

- rka t
(©1985-2018 Arkady Al 14



